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NATTONAL AERONAUTICS AND SPACE ADMINISTRATION

TECENICAL NOTE D-925

MEASUREMENTS AND CALCULATIONS OF THE EFFECTS
OF DISTORTIONS IN THE COLLECTOR SURFACE ON EFFICIENCIES
OF UMBRELLA-TYPE SOLAR COLLECTORS

By Victor R. Bond
SUMMARY

The meridional tenslons along the ribs in a Mylar-covered umbrella-
type solar collector produce a distortion in the reflecting surface that
1s detrimental to the imasge in the focal plane. The 1Investigation
reported herein was made to obtaln measured and calculated geometric
efficiencies of umbrella-type collectors as affected by these surface
distortions.

These studies show that 1f the tension transverse to the ribs 1is
increased relative to the meridlonal tensions, the distortion is reduced
and higher efficiencies can be attalned, and if the transverse tension
is small, the number of rlbs in the collector must be increased for
higher efficiencies.

INTRODUCTION

Studies (for example, ref. 1) have shown that umbrella-type struc-
tures made up of a number of curved parabolic ribs and covered with a
thin materisl, such as aluminlzed Mylar, so erranged as to make an
approximate parabolold, would provide mirrors that are capable of col-
lecting solar energy. These umbrella-type structures would be light in
welght and easlly folded for packeging. The structure would only
approximate a perfect paraboloild of revolution, because the surface
between any two ribs would be segments of a cylindrical parabolold.
This dlstortion from the true parabololidal shape 1s present regardless
of the way 1n which the material i1s applied to the ribs. 1In addition
to this distortlon, there exists a distortion due to the meridlonal
tensions in the membrane. These tenslons are introduced when the
materlal 1s applied to ribs and serve the purpose of eliminating
wrinkles that develop transverse to the ribs. Thls distortion is
toward the axis of symmetry of the approximate paraboloid and causes a



dlspersion of the light rays in the theoretical focal plane of the col- .
lector. The result is & loss in concentration efficiency.

The effects of the distortion due to the meridional stresses have
been studied both experimentally and analytically and the results are

presented herein. The effects are studied in the focal plane only, and
not with a three-dimensional recelver at the theoretical focal polnt.

SYMBOLS

a constant of proportionality, relating shear stress to the
coordinate x, 1b/cu ft

c concentration ratio, R%/r®

C1,C2,C3 constants of integration

Cg mean solar constant of radiation, Btu/ft®-sec

F a function of x,y,z'

f theoretical focal length of collector, ft )

h thickness of membrane, mils

K stress-geometry parsmeter, af/cs.

N number of ribs in collector

Q heat incident in unit time on a unit length along X'-axis,
Btu/ft°-sec

R radius of collector, ft

r radius of an aperture in focal plane, ft

S axls tangent to a meridian, ft

s arc length along a meridisn of paraboloid, ft

s' arc length along distorted surface, ft

X,Y,Z coordinate axes of collector, ft

<

X! axis in focal plane parallel to X-axils, ft
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At

axis 1n focal plane parallel to Y-axis

axlis normal to the undeformed surface

coordinates along X-, Y-, and Z-axes, respectively, ft
coordinate along normal W-axis, ft

coordinate along X'-axls, ft

height of a point on the dlstorted surface above the XY plane
2
y

angle between Y-axis and a tangent to the parabola z = ZE

fraction of initial position by which reflected ray is
deviated 1n the focal plane

ratioc of energy received through an aperture in collector
focal plane to total energy that was specularly reflected
from collector

rim angle of collector (angle between optic axis and line
Joining origin of coordlnate axes of theoretical focal
plane with collector rim)

angle between a deviated reflected ray and path of an undeviated
ray projected in a horizontal XY plane

radius of curvature of parabola =z = HE’ g
tensile stress along a meridian, 1b/sq ft
meximum value of og

tensile stress transverse to ribs, 1b/sq ft

shear stress in membrane, 1b/sq ft

APPARATUS AND TESTS

The models that were constructed for testing represented one segment
of an umbrella-type collector, geometrically similar to that shown in fig-
ure 1 and had rigid sides made of 1/k-inch aluminum alloy cut to the
desired parabolic shape. The metal sides were attached to a metal base
plate to keep the sides from moving with respect to each other. A surface



of Mylar was applied over the area between the two parallel plates as
shown in figure 2. The Mylar, being in tension, caused the side plates
to deflect in toward each other. This deflection was eliminated by
wedging wooden struts between the plates. These struts not only made the
sides vertical but alsc increased the tension transverse to the ribs.
Six models were constructed. Three had a rim angle © of 90° and rep-
resented segments from collectors of 30, 60, and 90 ribs, and three had
a rim sngle 06 of 45° and represented segments from collectors of 30,
60, and 90 ribs. All models had a radius R of 36 inches. In building
the models, no attempt was made to fix the tensions in the surface at
any specific value. The models were constructed so that enough tension
parallel to the ribs was present to eliminate surface wrinkles, and
enough transverse tenslon was present to make the surface as flat as
possible.

The models were tested on the apparatus shown in figure 3. The
test apparatus was a rigld metal stand with three horizontal surfaces
supported by six vertical steel rods. The bottom surface was a flat
metal plate that served as a support for the models. The top surface
was 1/h-inch plate glass and served as a transparent support for the
light source. Attached beneath the glass plate was a metal plate in
which a grid of 1/8-inch holes had been drilled at 1/2-inch intervals.
These holes served as a coordinate system for the narrow-beam light
source resting on the glass plate above. The middle surface was another
glass plate, the lower surface of which coinclded with the intended focal
plane of the collector. Glued to the lower surface of this plate was a
piece of rectangular coordinate graph paper. The position of the center
of an image in the focal plane was read directly from the graph paper
and recorded.

The light source was a 25-watt direct-current lamp, the rays of
which were collimated with a 13-inch focal-length achromatic lens. A
mask blocked off all the light except that through a l/l6-inch hole at
the center. The narrow beam of light was made perpendicular to the
three horizontal surfaces of the test stand by means of three leveling
screws in the base of the lamp and lens housing. The beam of light was
thus parallel to the optic axis of the collector.

A schematic diagram of the experimental spparatus 1s shown in fig-
ure 4. The light source was positioned on the glass plate over the
desired point on the model surface. The incident light ray was reflected
from the model surface ontc the grid in the focal plane. The coordinates
of the center of the image were read directly from the grid and recorded.
The entire surface of the model was surveyed in this manner at regular
intervals of area. A plot was made of all the images in the focal plane,
and from this plot the experimental geometric efficlency was determined.
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RESULTS AND DISCUSSION

The geometric efficlency of a collector ng, as used in this report,

1s the ratlo of the energy receilved through an aperture of radius r 1n
the collector focal plane to the total energy that was specularly reflected
from the collector. Thus, the geometric efficlency 1s a measure of the
effect of the major surface distortions of the collector at a glven con-
centration ratio. By definition, geometric efficiency does not include
losses due to absorptivity of the surface, diffuse reflectivity, minor
surface errors, or improper orientation of the collector.

The concentration ratio C 1s defined as the ratio of the projected
collector area mRe to the aperture area in the focal plane mr2. The
geometric efficiency 1s usually presented herein as a function of the
concentration ratio.

Parallel light, or a polnt source at infinity, 1s used or assumed
throughout this investigation. The results are therefore not strictly
applicable to the case of a mirror used to concentrate sunlight, since
the solar disk subtends an arc of approximately 32 minutes in the vicin-
ity of the earth. Concentration capability in sunlight is consequently
always less than in parallel light. However, 1t can be shown that for a
perfect 90-rib umbrella collector, that is, one having no inward curva-
ture of the surface between the rlbs, no more than about 3 percent of
the reflected sunlight will fall outside of the maximum image diameter
formed by parallel light. For less-than-perfect umbrella collectors,
and for smaller numbers of rlbs, the differences between the results
obtained with sunlight and with parallel light will be much less than
3 percent. It 1s apparent, therefore, that the increased complexlty
of including the effects of a finlte source size 1s not warranted in
an analyslis of an umbrella collector. These effects would, of course,
have to be included in the analysis of more precise mirrors.

Experimental Calculatilons

If &1l image points collected in the focal plane are assumed to
represent the same amount of projected collector srea, the geometric
efficiency may be determined from the data by calculating the ratlo
of the number of image points in an aperture in the focal plane of
radius r to the total number of image points recelved in the focal
plane.

The geometric efficlency Ny was obtalned for several aperture

radii for each model tested, and the results are presented as a
function of concentration ratio in figure 5.



Analytical Results

The complete derivations of the equations used in calculating the
theoretical geometric efficlency 1s glven in the appendix. Brilefly,
the procedure was as follows: The surface equation was derived by
considering the tensile forces acting on a small area of the model
surface. The surface contour in the XZ plane between two adjacent ribs
was found to be parsbolic. An example of the surface contour for a
60-rib collector is shown in figure 6. With the surface shape known,
the position at which any given light ray falling on the surface would
be reflected in the focal plane could be determined and an energy distri-
bution in the focal plane could be obtained. The assumption was made
that all the energy from any one segment of the collector would be con-
centrated along the aperture dlameter parallel to the X-axls. This
assumption is consistent with the fact that the distortions are so small
that essentially only the X projection of the normal to the surface
is changed by the distortions. The Y component of the normal changes
very little.

An example of the energy distribution for a 60-rib collector over
a radius in the focal plane is shown In figure 7. The relations used
are given in the appendix. From the energy distribution, the geometric
efficiencies were calculated for each radius where it had been determined
experimentelly. The results are shown in flgure 8 compared with the
experimental curves. The geometric efficiency is shown plotted against
concentration ratio for a particular model and for a range of the stress-
geometry parameter K of O, 2, and k4.

The stress-geometry parameter K 1s shown in the appendix to be

a
s
2 , which occurs at the

a function of the maximum stress ratio
sl
vertex of the umbrellas segment, and of the geometry. It is shown that
G
the parameter K 1s 0.5%

2,?ax for a collector with a 90° rim angle
S

i
<% 2) and is 1.216—?19@5 for a collector with a 45° rim angle
s‘

(I% 0.829).

Comparison of Experimental and Analytical Results

No attempt was made to measure the stresses in any of the col-
lector models. The transverse tenslon was increased by addition of
struts between the sides of the model until very little curvature
could be detected visually. From figure 8 it is apparent that the

I»
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90°-rim-angle models had smaller stress-geometry parameters than did the
45°_rim-angle models. This result is consistent with the result shown
in the appendix; namely, that K should be smaller for the model with
a 90°-rim angle than with a 450 rim angle, if the maximum tension ratio
is assumed to be the same in both models.

For the models with rim angles of 90°, the experimental curves lile,
in general, between the calculated curves with stress parameters K of
2 and 4 for the models of segments from 60- and 90-rib collectors, and
between the calculated curves with stress parameters K of O and 2 for
the segments from a 30-rib collector.

For the models with rim angles of h5°, the experimental curves lie
in the region to the left of the calculated curves with stress param-
eter K of 4 for the models of segments from 60- and 90-rib collector,
and between the calculated curves with stress parameters K of 2 and
4 for the segment from the 30-rib collector.

The experimental curves are seen to be at least 20 percent less than
the maximum calculated geometric efficlencles, where the stress-geometry
parameter is zero, in spite of the care to flatten the surface contours
of the model. The experimental curves are lower primarilly because of
the nature of the surface curvature. A secondary effect is reduction
of efficiency caused by dispersion of a féw points which fell on local
irregularities of the membrane.

For a given concentration ratio and configuration, the efficiency
decreases with increasing stress parameter, as shown in figure 8. TFor
example, with a 60-rib h5°—rim—angle collector at a concentration ratio
C of 1,000, the geometric efficiency 1s 0.83, 0.66, and 0.53 for stress
parameters of O, 2, and 4, respectively.

Figure 9 presents cross plots of the data from figure 8 at a con-
centration ratioc of 1,000. The geometric efficlency 1s presented as
a function of the number of ribs N. It is seen that the h5°-rim-
angle models have higher theoretical efficiencies than the 90°-rim-
angle models for the same stress-geometry parameter. However, the
experimental geometric efficlencies are about the same at a concen-
tration ratio of 1,000. Experimentally, the geometric efficlency
increases linearly over the range of ribs from 30 to 90. A slight
linear extrapolation of the experimental curves shows that in order
to provide an efficiency of 0.80 at a concentration ratio of 1,000,
a collector would require asbout 106 ribs for a 45° rim angle and about
110 ribs for a 90° rim angle.

Also, from figure 9, it 1s seen that a lower limit to the number
of ribs necessary for a usable calculated efflciency of 0.90 at a



concentration of 1,000 exists. For example, in the case of 45C-rim-

angle collectors (fig. 9(a)), a collector with a stress parameter K

of 2 must have 88 ribs and a collector with a stress-geometry param-

eter K of 4 must have 106 ribs. In order to attain high geometric

efficiency, collectors must be constructed with small stress-geometry
parameters, or with a large number of ribs.

CONCLUSIONS

The effects of distortions in the collector surface on the effi-
ciencles of umbrella-type solar collectors have been lnvestigated
experimentally and theoretically, and the following conclusions are
indicated:

\O O\W +

1. For a given model and concentration ratio, the theoretical
geometric efficlency decreases as the stress-geometry parameter K
increases. For example, the maximum theoretical geometrlc efficilency
attainable for stress-geometry parameter zero at a concentration of
1,000 is 0.83 for a 60-rib collector with 45° rim angle. When the
stress-geometry parameter has values of 2 and 4, the efficilencies <
attainable are reduced to 0.66 and 0.53, respectively.

2. For an umbrella-type solar collector to have high efficiency,
1t must be constructed so that either the stress-geometry parameter 1s
small (that 1s, the transverse tension is large) or the number of ribs
is large. For a collector with a rim angle of 450, an efficiency of
0.90 at a concentration of 1,000 may be obtained with 88 ribs and a
stress-geometry parsmeter of 2, or with 106 ribs and a stress-geometry
parameter of 4.

3. Calculations show that collectors with 45° rim angles give higher
geometric efficiencies than the collectors with 90° rim angles for the
same concentration and stress-geometry parameter. Experimentally, there
was 1little difference in the geometric efficiencies at a concentration
ratio of 1,000 in the range between 30 to 90 ribs. The 90°-rim-angle
models had smaller stress-geometry parameters than did the 45°-rim-angle
models. It was also shown by calculation that the 90°-rim-angle collec~
tors should have smaller stress-gecometry parameters than the h5o-rim-
angle collectors.

]
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The experimental geometric efficlencies were in all cases about
20 percent below the maximum calculated efficienciles, which were for
collectors with stress-geometry parameter of zero.

Langley Research Center,
Natlonal Aeronautics and Space Administration,
Langley Field, Va., May 22, 1961.
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APPENDIX

ANALYTTCAL DERIVATIONS

Derivatlion of Surface Equation

The equation of the surface between the two parabolic ribs of an
umbrella-type collector 1s found by considering the forces that act
upon a small element of the surface ds ds'. (See sketches 1 and 2.)

>
O O\ + ¢

R———>

3 ds R N
a ds'@ P N
Y -y

Sketch 1 Sketch 2

If the number of ribs is large, 30 or greater, then the projection of
the segment in the XY plane is a good approximation to a triangle of
height R and base 2nR/N.

The forces on the element are resolved (as shown in sketch 3) along

the orthogonal axes, W, S, and X which have their origin at the center
of the Initial position of the element.

W ¥°

H

X (projected)
Sketch 3
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The axis W 1s normal to the undeformed surface at the point P; S is
tangent to the surface at P and lles in a plane parallel to the
YZ plane.

Conslder the stresses acting on the surface element as shown in
sketch 4. Assume that the angles made by the stresses with the axes S
and X are small.

69 Bcs
GS + -a-é— ds
6,6
<
T + g——:{ dx
« T + or ds
aF 08
ATt
6o g, + s ax
S ox
Sketch 4

For equilibrium in the X-direction,

Ogr + " dx - ggith ds + |7 + Ss ds - T_h dx = 0

or
0dgt L 31 _ o (1)
ax ds

For equilibrium in the S-direction,

do )
[Gs+-a—s—sds-chhdx+['r+§ldx-'r]hds=0
X
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Sketch 5
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1f two small terms due to the curvature of the ribs are neglected. This
equation simplifies to

%9 L dr _ (2)
Js ox

For equilibrium along the normal, or W, directlion, several force
components are to be taken into account. The normal components due to
stresses og, 0gv, and T are as follows:

(a) The principal part of the normal component 1s due to the curva-
ture of ribs. (See sketch 5.) This component becomes, for rib radius
of curvature op,

dg
og + —2 ds|sin[38) + o sin(38)Ih ax = ogh 35 &
Js 2p 2p p

since ds/2p is & small angle and terms in (ds)2 are neglected.

(b) The normal component due to the stress o, acts in the deformed
surface. This component, as seen from sketch 5, is

S 2
crs+.._cf.§ds @+_a_ﬂdshdx_gs-a—whdx=h(—a-<0's-a—w>]dxds
ds 35 3g2 ds  Js Js

if terms in (ds)2 are neglected.

(c) Also present is a normal component due to ogr- This com-
ponent 1s found in a manner analogous with that due to o5 as

n as o 2o .
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(d) A normal component due to the shear stress
membrane is illustrated in sketch 6.

Distorted
surface

Sketch 6

This component becomes,

b Eo e o) b

/ 2
SR, A - "R & S - ) I - -
+[:\T+-a;ds>(ax+axas ds/; Taxhdx-[a}c(T

where terms in (ds)2 and (dx)® are neglected.

s

Undistorted
surface

\

i
/

7 acting in the

M .
Jds * Jds ox dj}
+ J

d [ ow)
+ 5;(7 g/]h ds dx

Collecting all normal components found in the precedlng para-
graphs (a), (b), (c), and (d) for equilibrium in the normal direction

gives

b ]
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Rearranging and dividing this equation by h dx ds ylelds

Qlog My r |4 g, My | T
as"Sas”aJ‘“ax[“Sax”as]*o ° )

(-

M~ 0.

s

Inasmuch as the deflections are small, it 1s assumed that

The normal force in equation (3) then becomes

O [r M) 4 O 5., M| 4+ % _
§§<T Bx) +'En;éé 8x> ¥ p

It is also assumed that the stress Oyt does not vary with x;

o
that is, Bil =~ 0. This assumption signifies that the tensile stress

across the rib in the x direction at any point remsins constant when
the surface 1s deformed; therefore, for equilibrium in the normal
direction,

2 g
w33 a0E) ©

Equations (1), (2), and (4) are the equilibrium equations for the
membrane. ’

g
With the assumption that —gii-z 0, equation (1) becomes Se = 0,
s

This means that T cannot be a function of s or of y since s
depends on y. Therefore, T = 7(x).

Assume now that 7t = ax. This condition allows the shear stress
to venish at the center of the surface and to be a maximum at the
boundary. If T = ax, then from equation (2),
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s _ (5)

Thus, og depends upon s and y. Equation (4) may be written

2
US,B_W+T.§_<§E>+S§=O (6)
Ax2 o8 \Ox p

Since

2
Ow _ O[] O (W
Bxe Bx< x> > Bs(éx)

and since from equation (2), it is seen that o5 and T are of the same
order of megnitude, the second term of equation (6) may be neglected
compared with the first. Equation (4) then becomes

o
£
Q

8 _
s! axg ?; =0 (7)

Because o0gr+ does not depend on x, and because og and p are
functions of ¥, equation (7) may be integrated to give

oW o]
agr S = - Ex 0y (8)

Since w 1is symmetrical with respect to X, (g; -0 = 0, so that

C; = 0. Integration of equation (8) gives

o
w o= - 1 _7s x2 + 02 (9)
2 O'Svp
At the boundary, where x = % ¥y, w =0, and therefore

n

o
Co = 1 7s &= 2

2 cs.p EE Y

Therefore, the normal deflections (eq. (9)) are given by

(10)

Itu
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and,

With
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/
Og /o2
w=_:éL. 8 l.j.T._ye _x2> (ll)

z' -2 =W COS Q (12)

cos a =W = 1 (13)

2
Since z = ¥ —

dz _ Y

dy 2f

therefore, equation (13) becomes

The radius of curvature p 1s defined by

IRis

dez
a 2

Y

2 3/2
=2f(1 + —
(3

these substitutions for cos a and p 1in equation (12), the

vertical deflections z' - z become
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2
2 o £§ y2 - x2)
z!' - - = 2‘— 5 \N (lh')
b bf o . N\2
(1 + I
e
Evaluation of Stress og and Stress-Geometry Parameter K
From the assumption that T = ax and equation (2), the stress og
g
may be found. Since equation (5) shows that §_§ = -a,
s
gy = -8 \/p ds
o \l/2
- .a f (1 +L§) ay (15)
L
When this equation 1s integrated,
1/2 1/2—
a =—af[y—-l+l’—2— + logg | L + 1+ + afC (16)
8 2f 2 of 2 5
Le Le=,
When y =R, 0dg = 0, and the constant C3 becomes
1/2 1/2
R R® R R2
s - Bl + ) v vom | B+ (1 ) (7
2f hf2 2f ufz
The stress oy (eq. (16)) is therefore
~
1/2 ‘.
R R2
1/2 1/2 LA SO I A W
-ar/B[1 + B2 A 2f 42
GS af 2f<l + K;g) 2fé_ + ufe + 1oge / \1/2 \
‘ng‘ + \1 + VE.__.Qi ;
\ i 4t/ ‘
i -
* 7 (28)

|

4]

O O\
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A convenlent constant for msking calculations may be found from
equation (18). At the origin (x =y = z' = 0), the stress oy takes
on its maximum value

2\1/2 2zl
g = af -R—<l+-R-—> +loge-2R?+<l+L- \

8 ,max
’ of e be?, ;
J

Dividing this equation by Og1 and solving for af/cs., which is
defined as K, glves

g Ogt
K = af  _ _ s,max/ s (19)
Ogt 1/2 1/2
R g2 R R2
El+—-—2-1 +logeE+ l+.__2
4s</ Lt

The paremeter K thus depends upon the meximum stress ratio

Og,max/0s' @&nd the geometry of the umbrella segment R/f.

For the two values of R/f investigated herein, K 1is obtalned as:

For 6 = 45° or % 0.829,

g
1.016. S,meX

K =
Usi
For 6 =90° or % = 2.000,
a
K = 0'5% SzmaX

e
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Determination of the Deviation of a Point Image
in Focal Plane

A ray of light incident upon the deformed surface is reflected to
a point in the focal plane, as shown in sketch 7.

Reflected
X ray

——
€X
X 1 F

Y
R
Sketch 7

The reflected ray lies in the plane containing the normal to the surface
and the incident ray.

The prolections 1n the XY plane of the normal to the deformed sur-
face are proportional to the directional derivatives, OF/dx and
OF/dy, of the normal. The projections of the reflected ray in the
XY plane coinclde with the projections of the normal and are thus also
proportional to OF/dx and OF/Jy.

The function F 1is merely equation (14) rewritten as

F(x,y,z') =z' - - =

f L4r o, 2
5 <l + ZE§>

The directional derivatives OF/dx and OF/Jz' are found imme-
diately to be
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and

F
2 =1

The directional derivative JoF/dy 1s found from the relation,

Ffoy _ _d=' _F
3F /32! S oy

since %ET = 1. Inasmuch as the deflections z' - z are small, the
Z

slope Jz/dy of the parabola z = %; is nearly the same as 3z'/dy.
That is, since

z' -z =12" - XE = 0
Lr
d9z _oz' _y
oy Oy 2f

Consequently, the directional derivative BF/ay becomes

oF _ _ ¥
dy of

2l

From sketch 7, the angle ¢ that the deviated reflected ray makes

with the undeviated ray in the XY plane is

OF [ox g
oF /3y

tan ¢ = -
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since ¢ is a small angle. So the angle ¢ becomes

Is
¢ _ GS'
2\
yil + —_5
e

The deviation along the X'-axis in the focal plane is

Therefore,

W

The coordinate x' of the deviated ray in the focal plane is

or

An investigation as to the deviations of the reflected ray along
the Y- and Z-axis near the focal plane may be made by comparing the
directional derivatives of the normal to an undistorted surface with
those just calculated for the normal to the distorted surface. For an
undistorted surface,

]

(20)

O OWH



\O OMW H

25

The directional derivatives of the normal to this surface are:

F _

5; =0

O _ _ ¥

oy of
and

OF

S -t

™

and

It is seen, then, that the normal projections do not change at all
along Z and are very nearly the same along Y. The only significant
change 1n the normal 1s along the X-axls. It 1is assumed throughout
this report, then, that all of the reflected rays will fall on the
X-axls.
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Calculation of Flux Distribution over a Diameter in
the Focal Plane

On the surface between the two ribs, there is some locus of points,
beginning at y =R and terminating on a rib at ¥y = yp, which will
always reflect a ray of light to the same point on the X'-axis 1in the
focael plane. (See sketch 8.)

X
Yy =30

Sketch 8

From the law of conservation of energy

Cg dx dy = dQ ax’

or
4
§-ge
S
From equation (20)
)
dx' 1+e¢
dx
where
O, /T
¢ = s/°s >
2
1+ Y _

I

\O OW+ A

™
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Then,

. R

Q. f &y

CS Yo 1+ €

f—=
L yo ag ] 1
1 1+ s/ 5 5
3
9 4t
Or, in nondimensional form,
: R/2f  4(y/er)
K -2 (21)

» Cef oF
S vo/ L%
o\ 2
1+ Z.E
bt

This equation (eq. (21)) has been evaluated by graphical integration.
The values of Q/Csf obtained are plotted as functions of x'/f in fig-

ure 7. The quantity x'/f is obtained from equation (20), which has
been nondimensionalized to give

Y, Oa /Ogt
Yol , _Ts/%" (22)
f 2 \2
(i + Z;§>
Ly

Calculation of Geometric Efficiency and Concentration Ratilo

The geometric efficiency as a function of concentration ratio is
. obtainable from relastions shown in equations (21) and (22) as described
in the following paragraphs.
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First, plot of é/Csf against x'/f as shown in sketch 9.

r/f (%‘L)max x'/t

Sketch 9

The total nondimensional energy absorbed by the radius in the focal
plane is

L=
0 CE/ T

The energy received by the radius, when only a portion of the radius

out to %?-: % 1s exposed 1is

v/t Jé_ ax’
0 CSf £
The geometric efficiency is then given by
/\r/f ( . a xr
Cgf T
[(x /£) max )dx.
S f

-

L]
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This relation was solved by graphical methods for a particular segment
with a glven stress-geometry parameter K. The geometric efficiency was
plotted as a function of the concentration ratilo C where,

c - ®/0)°
2
(r/f)
Since the same integration could be obtained for the total number N

of the collector segments, the total geometric efficiency ls the same as
that for one segment.
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Figure 5.- Experimental test setup.
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Figure 4.- Schematic diagram of experimental apparatus.
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